Northwest Mississippi Community College Logo

Chemistry

Chemistry students who plan to continue their study at a senior college and will be candidates for a Bachelor of Arts or Bachelor of Science degree can prepare themselves for a major or minor in chemistry with the following program.

Education
A bachelor’s degree in chemistry, or in a related discipline together with a significant background in chemistry, usually is required for entry-level chemist jobs. Although some materials scientists hold a degree in materials science, these scientists also commonly have a degree in chemistry, physics, or electrical engineering. Most research jobs in chemistry and materials science require a master’s degree or, more frequently, a Ph.D.

Students planning careers as chemists or materials scientists should take courses in science and mathematics, should like working with their hands to build scientific apparatus and perform laboratory experiments, and should like computer modeling.

In addition to taking required courses in analytical, inorganic, organic, and physical chemistry, undergraduate chemistry majors usually study biological sciences; mathematics; physics; and, increasingly, computer science. Computer courses are essential because employers prefer to hire job applicants who are able to apply computer skills to modeling and simulation tasks and are able to operate computerized laboratory equipment. These abilities are increasingly important as combinatorial chemistry and advanced screening techniques are more widely applied. Courses in statistics are useful because both chemists and materials scientists need the ability to apply basic statistical techniques.

What can I expect from a career in Chemistry?
Chemists and materials scientists search for new knowledge about chemicals and use it to improve life. Chemical research has led to the discovery and development of new and improved synthetic fibers, paints, adhesives, drugs, cosmetics, electronic components, lubricants, and thousands of other products. Chemists and materials scientists also develop processes such as improved oil refining and petrochemical processing that save energy and reduce pollution. Applications of materials science include studies of superconducting materials, graphite materials, integrated-circuit chips, and fuel cells. Research on the chemistry of living things spurs advances in medicine, agriculture, food processing, and other fields.

Many chemists and materials scientists work in research and development (R&D). In basic research, they investigate the properties, composition, and structure of matter and the laws that govern the combination of elements and reactions of substances to each other. In applied R&D, these scientists create new products and processes or improve existing ones, often using knowledge gained from basic research. For example, the development of synthetic rubber and plastics resulted from research on small molecules uniting to form large ones, a process called polymerization. R&D chemists and materials scientists use computers and a wide variety of sophisticated laboratory instrumentation for modeling, simulation, and experimental analysis.

Chemists also work in production and quality control in chemical manufacturing plants. They prepare instructions for plant workers that specify ingredients, mixing times, and temperatures for each stage in the process. They also monitor automated processes to ensure proper product yield and test samples of raw materials or finished products to ensure that these samples meet industry and government standards, including regulations governing pollution. Chemists report and document test results and analyze those results in hopes of improving existing theories or developing new test methods.

Pathway Information